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TECHNICAL: NOTE 3375

A THEORY FOR PREDICTING THE FLOW OF REAL GASES IN SHOCK
TUBES WITH EXPERTMENTAT, VERTFICATION

By Robert L. Trimpi and Nathaniel B. Cohen

SUMMARY

The nonlinear characteristic differential equations applicable to
a quasi-one-dimensional unsteady channel flow with friction and heat
transfer are linearized and integrated in functional form for the par-
ticular study of small perturbations from 1desl shock-tube flows. If
the equivalence of unsteady- and steady-flow boundary layers is assumed,
the problem of determining the perturbetions in the unsteady flow reduces
to an evaluation of the drag of a flat plate in the equivalent steady
flow.

For air at initially uniform temperature, the theory evaluated with
an equivalent steady-flow turbulent-boundary-layer skin-friction coeffi-
clent predicts that shock attenustion increases with distance and that
average values of static pressure, velocity, density, and Mach number
at a fixed position in the hot gas increase with time, whereas average
sonic speed simultaneously decreases with time at a fixed position.

Experimental measurements of the shock attenuation with distance
and static-pressure variation with time at a fixed position for diaphragm
pressure ratlos from spproximately 4% to 18 gave good sgreement with the

theoretical predictions where a value of 0.0581 X (Reynclds n.umber)"l/5
was used for the skin-friction coefficient.

INTRODUCTION

The shock tube has become a common serodynamic testing facility
because of its relative inexpensiveness and versatility. 1In a shock
tube it is possible to obtalin unsteady flows with a wide range of flow
parameters, such as Reynolds number, Mach number, and temperature, that
either could not be obtained in steady-flow apparatus with the present
temperature 1imit of known alloys or could be obtained only with messive
and costly equipment.

The various states of the flow of a perfect, nonviscid, nonconducting
gas In a shock tube may easily be determined theoretically by application
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of the basic equations of momentum, continulty, and energy. (See, for
example, refs. 1 to 4.) The theoretical states sqo determined are coni-
cal in a dlstance-time sense (until the shock-tube end effects interfere);
that is, parameters are Iinvariant along rays which have the same ratios
of distance from the diaphragm station to time elapsed since diaphragm
burst. This perfect-gas flow is also characterized by two reglons, of
equal constant velocity and pressure but of different density and tem-
perature, separated by a contact surface or entropy discontinuity. One
of these regions has as its leading boundary the shock wave advancing
down the tube into the low-pressure alr at rest; whereas the other has
as its trailing boundary the expansion wave progressing into the high-
pressure section. Therefore, it 1s theoretically possible to obtaln
steady-flow aerodynamic data in the short-duration steady flows that
exist while elther region 1s passing a fixed point along the shock tube.

Unfortunately, the flow of a real gas in the shock tube departs
significantly in many cases from the aforementioned theoretical flow.
It is intuitively obvious that a real flow differs from the theoretical
flow in thet a pressure drop is required of a real fluid flowing in a
tube and a further pressure change is required to account for heat trans-
fer between the tube and the fluid. In addition, the flow in the region
behind the entropy discontinuity hes been found to be quite turbulent
and erratic so as to make 1t of very limited velue for most testing
purposes. Although the flow between the shock wave and the entropy dis-
continulty does not degenerate into large-scale turbulence, this flow
is still affected by viscosity, heat transfer, other imperfect gas
effects, and nonidesl diasphragm burst. (See refs. 1, 3, and 4.) The
nonideal condition of disphragm burst may be minimized by the proper
choice of disphregm material for each particular initial set of condi-
tiong. However, the other effects are unevoideble, and 1t is to be
expected that theilr magnitude will increase in importance in the high-
temperature and high Mach number range, where the shock tube appears
t0 be otherwise most advantageous.

The attenuation in shock strength as the shock travels down the
tube 1is the most obvicus and easlly measured deviation from perfect-
fluid theory. Thils attenuation has been the subJect of several experi-
mental and theoretical studies (refs. 3, 5, 6, and T).

The theory of reference % may be briefly outlined as follows. The
unsteady flow of the hot gas between the shock and entropy discontinuity
is reduced to a quasi-steady flow by choosing a coordinate system fixed
to the shock. The boundary-layer problem is then reduced to & laminar
solution similar to the Blasius solution, except that the wall velocity
is nonzero. The unsteady boundary condition of the receding entropy
discontinulity is ignored as ig the entire cold-flow region between the
expansion and entropy discontinuity. The skin-friction and heat-transfer
effects obtained from this solution are then averaged across the assumed
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one-dimensicnal flow and the resulting changes in average momentum and
average energy require the generation of moving waves. These waves are
assumed to be generated at the entropy discontinuity and to travel
unchanged in strength until they overteke the shock. The shock attenua-
tion is then determined from the waves which have overteken it since
flow was first initiated.

The theories of references 6 snd 7 are much less elaborate than
that of reference 3 and are based on the assumption that the mass flow
through the shock at a certain time is the same as the mass flow at the
entropy discontinuity evaluated at the same time. The mass flow at the
entropy discontinuity is determined from the boundary-layer displacement
thickness and free-stream conditions corresponding to an unattenuated
shock. This boundary-layer displacement thickness is determined in ref-
erences 6 and 7 from sn extension, to a circular tube and rectangular tube,
respectively, of the Reyleigh problem of the lnstantaneous acceleration
to constant velocity of a flat plate in a fluld at rest.

In an unpublished anslysis made at the Langley Aeronsutical Iaboratory,
Messrs. Paul W. Huber, Donald R. McFarland, and Philip Ievine collaborated
on a theory for shock attenuatlicon based on the mass-flow decrement due to
displacement thickness at the entropy discontinuity. In order to deter-
mine the shock attenuation at a given time, the displacement thickness
was evaluated in this theory for a time smeller then this given time by
an interval equal to the wave-travel time from the entropy discontinuity
to the shock. This displecement thickness was determined from empirical
flat-plate steady~flow datas at a distance from the leading edge of the
£lat plate equal to the distance from the diaphragm station to the entropy
discontinuity.

None of the aforementioned theories have given good agreement with
experimentally determined shock attenuation. Reference 8 reports the
use of a chrono-interferometer to obtain the timewise variation of density
in the two theoretically constant density regions. A demsity rise with
time was noted for both regions. Comparison of the experimental data
with the theory of reference 3 gave poor correlation. By employing vari-
ous simplified flow mcdels, the aforementioned theorlies have ignored the
fact that unsteady waves are continually being generated by the effects
of friction and heat transfer in the entire flow region. The result of
these waves overtaking the shock is attenustion, and their motion along
the tube results in variations in pressure, denslty, and velocity at
given points. Therefore, in order to obtain a satisfactory understanding
of the flow of & real gas in a shock tube, a theory must recognize and
treat the wave system in the entire flow fleld. Such a theory has been
derived in simplified form, and this theory, together with experimental
correlation obtained at the Gas Dynamics Branch of the Langley Laboratory,
is presented in this peper.
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SYMBOLS -
%
A ares of flow
8 veloclty of sound
B constant defined by equation (D)
cp local skin-friction coefficient, 21/pU%
Cy coefficient of specific heat at constant volume
Cp coefficient of speclfic heat at constant pressure
D hydrsulic diameter, - X Area
Perimeter
Ei—l convective derivative, éﬁ—l + U éﬁ—l g
Dt ot ox
. 4
He heat sdded per unit mass by frictlonal dissipation
h wall heat-transfer coeffilcient
F heat added per unit mass due to heat transfer and heat sources
I fixed distance along shock-tube axis
M=Ula
My = U/éa
Mg = Ufag
Mg = Ug/ow
My = V/ax
My = W/ae
N defined in equation (53)
L 4
uy v l/n
n reciprocal of velocity exponent in boundary layer, T = (5)
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2c
characteristic parameter, —Rx e+ U

effective characteristic wave parameter, P -

I
sl 1o

Prandtl number

static pressure

static pressure immediately behind shock

2
characteristic parameter, —%E a ~-TU

=e] o

effective characteristic wave parameter, Q -

R

gas constant

Reynolds number

recovery factor

entropy

temperature

time

free-stream velocity
shearing-stress velocity, YT/p

shock velocity

velocity in boundary lsyer at ¥y
velocity of rey in x,t plot of figure 1, xm/tv
velocity of ray in x,t plot of figure 1, xw/tw

distance along shock tube from dlaphragm station

distance from surface
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v ratio of specific heats, cp/cv; assumed = 1.40 for computations
o] boundary-leyer thickness; also indicates differential quantity
gézl characteristic derivative, gé—l + (U % a)%ﬁ_l
B¢
T a
S difference between wall temperature and adiabatic recovery
temperature of flow
H coefficient of wviscosity
1% coefficient of kinemstic viscosity
3 distance flow has progressed along surface
o) density
o = B
&8
T wall shearing stress

#p_»3q.,%p. 00> Bs »@ influence coefficlents, defined in equa-
o?Pda?PFg? Qg2 Foq’ Fog tions (12), (13), and (26)

Subscripts:
Subscripts not inecluded on the symbols defined sbove refer, in

general, to values at polints or within regions shown in figure 1.
Exceptions to be noted, however, are ag follows:

o) perfect-fluld value
T at time t

X at distance x

exp experimental

ref reference value

theor theoretical
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THEORY

The basic steps followed in derlving the theory are first outlined.
The characteristic differential equations for a quasi-one-dimensional
unsteady channel flow are linearized or the basis of the perfect-fluid
flow in & shock tube. The terms of these equations for a particular
lamina of fluid in the shock tube are expressed as functions of the
distence the lamina has moved along the shock tube. A transformation
of variables of integration is then made whereby the time integral of
the characteristic equation is replaced by a distance integral along
the particle path. The values of the flow varisbles, such as pressure,
velocity, temperature, and so forth, mey then be found from the values
of the integrated characteristic parameters.

One method of evaluating the resulting integrals is to agsume the
equivalency of steady and unsteady flows based on particle-flow time.
Application of this method reduces the scolution for the characteristic
equations to the simple computation of the skin-friction integral (total
drag) of a flat plate in steady flow.

The characteristic equations for a quesi-one-dimensional unsteady
channel flow as derived in appendix A are:

S "D £
B2 _ Dl A a®R, y-1, K Her (1)
5% Dt y Bt > Dt D

S S
39 _ g D loge £ 2 ° R,2x-1, > R + 2U2cf (2)
5% D% y 5% 7 Dt D

Furthermore, under the assumption that the relation between skin
friction and heat transfer 1s the same for both steady and unsteady
flows, the convective derivative of entropy may be expressed (see
appendix B) as

D

e L0a)

- (Me T Pr-2/3)%z Ues ()

(w)
ot

For spplication to the study of flows in a shock tube, the preceding
equations are linearized by assuming that all coefficients and differential
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operators on the right-hand side are constant at their respective
perfect-fluid values. TIn other words, the lines making up the perfect-
fluld characteristics network are used as paths of integration, and the
various derivatives and coefflcients are evaluated on the basis of the
velocities, temperatures, and so forth, of the perfect fluld. Equa~
tions (1) to (3) then become, if linearized on this basis (subseript o
refers to perfect fluid),

5 s 2
5t ° Dt o 7 \Bt ) y  O\Dt /, D

S S
-Sj.'— = -8 P__];o_is.e;ﬁ + ?_9. ° ﬁ + 7 - 1 a D —R- + 2U02cf (23)
5t O\ Dt 7 o 0 o

D g o 1 8 2/3\ 2y
o] -
r—— = F+ —_— = P _UCE 55.

Where

It 1s further assumed that, although the velocity of the leading
edge of the expansion fan is correctly used as -a., the fluid and

characteristic velocitlies may be gpproximeted by U, and (U t a)CL in

the entire reglon from the leading edge of the expansion wave to the
entropy -discontinuity. This assumption, which greatly simplifies the
computations, introduces errors that increase in magnitude as the
expansion-fan region incresses wilth shock pressure ratio.

Equations (la) and (2a) are expressions for the derivativee along
characteristics of slope %% = (Ut a), and equation (3a) evaluates a
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derivetive along a characteristic of slope U, (particle path). If

the length ¢ 1is introduced and defined as the distance that a particle
in the perfect fluid has traveled since its accelerstion from rest by
elther the expansion wave or shock wave, the terms of equations (la)

to (3a) may be evaluated as functions of ¢t alone in either region «

or B. (See fig. 1.) It should be noted that the functional relation-
ship meay be different for the different regions. When these assumptions,
together with the definition of ¢, are applied to the reglon o between
the expanslon zone and the entropy discontinuity, the following relations
are obtained from the plot of distance against time of figure 1:

X = -acty + Ug(t - i) ()
= Ug(t - ) (5)

Substituting equation (4) into equation (5) gives

U
£ = -———fl—-(x + act) (6)
Uy + a¢
Therefore
o) . Ll Uo a()
3x at ox U, + ag de (72)
and
3) _a() 3 _ e a() )
ot dg Ot  Up + a¢ 4t

Equations (7a) and (7b) mey be used@ to obtain the convective derivative
as follows:

__(._l —u.{.Uo&zUO?i_)_ (8)
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istic derivative is expressed as

8() _b() ;. 3()

)
5t Dy T Ga S ()

this derivative may be written, for region o of figure 1, by substi-
tuting equations (7a) and (8) into eguation (9) as

\

5()= d()+ UO d()
5t © dt T Ug+ac ¢ a
o € g | (10)
8( ) Mg+ nEt1l  a()
5t My, + 1 © at )
Similerly, for region B, which lies between the entropy dis-
continuity and the shock wave,
5( ) oMg -Mg 31 __ d()
= s B Uo (ll)

5t ae

oM, - Mﬁ

When equations (3a), (8), (10), and (11) are substituted in equa-
tions (1la) and (2a) and the area term is neglected because of the
averaging process described in appendix A, the following equations are

found for regions

o and B, respectively.

In order to avoid needless

repetition, the solutions for both &P/&t and 5Q/6t are presented in

one equation with both
on the right-hand side.

plus and minus signs indicated for certain terms
The upper signs apply to the cheracteristics

with slope U + a and the lower signs to those with slope U - a. Thus,
8P
1 )5t 21 Mo+ n ¥l o
= =53 E7-l)Mm:FﬂNJgﬁ————-——MJL +
8¢ 5Q Ma"l-'l]
8t Jg
+ 1
Sa p -2/3) , _Tat Uer
T T a
a Mo + (7 - 1)
ey,
= T °f, (12)

Pac
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5P
Bt a Mg ~ 1
L =§—E[—1M“JZIM Ms =M T 12,
felog| P %e (7 = 2 £ 2Mp + — o e
5t)p

= H CfB (13)

These eguations may be integrated along the characteristic lines.
However, for ease of computation, since the slopes of these lines are
assumed constant for each region due to the linearizatlon process, inte-
gration may proceed slong partlcle paths by & sulteble change of varisble.
For example, from the geometry of the accompanying sketch of region o,

the following equations apply: A

t

(X:t)
x(t) = ~acty + Ut - t1) I //
x(t) = —acty + (U + ag) (t - tp) ///, i //
|
x(t) = Utg + (U - ag) (t - tg) P / §+: / :
i
/
0 X -

Solutions of the first and second equations and of the first and
third equations yileld
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and
U+ ac - &g

(t - t1) = T (t - ta) + tq

Therefore, from the definition of the length ¢ in region a as
t = U(t - t1), the following relations are obtailned:

Along titp,
£ = (- oy~ el (1%)
+ M
_dg Myt
61:_Ul+}'im+n (15)
Along ttg,
tE = (t - t3)U gégi_ﬂ_:_i,+ Utg (16)
My + 10
_dg Met+m
at_UMqun_l (17)

Therefore equetion (12) is integrated in region o with the change of
varisble specified in equations (1k4) to (17):

P, - t ¢p it
_E__;EB =L JF <§E) Bt = —2% Ucr, bt
8’€ 8-6 -tb S't Q D

or

- t
Py - By _ ¢Pa Mo + 1 U/ﬁ( ) ety at (18)
0

B¢ D M, +n+1
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and

% -% _1 (i%) st

¢ ae

or

% - % _fPog Mu+m Lé(ﬂ

d 1
ac D My+ 7 -1 tg Cfy g (29)

Similer relationships may be found for region B. From the geometry of
the accompanying sketch, it is evident that x may be expressed as
follows:

x(t) = Ugty + U(t - t3)
x(t) = Utg + (U + ap) (t - tp)
x(t) = Ut + (U - 2p) (6 - tx)

0 X
Solving the above equations yields
t - % 2p(t - 1) t
- - +
J U - Ug
and
U -U + &
8 B
Tt -ty = t -1t
3 A ( k)

Consequently, since in region B, §==[Ié;- tj), the followling relations
apply:
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Along ttt,

and along tty,

GMB - MB

1+ oMg - Mg

(o4

d

il
cﬂ}&

Therefore, equations (13) and (20) to (23) can be used to obtain

b o
P, - P
87 F Jn -2;<%%> Bt = —b Uepgdt
8¢ ty Be B b

CfB dt

B ¢PB oMg - MB Lg (t)

D oMy - MB - 1 yUuts

and

JF UbeSt

efg dg

e
8¢ X ae St

-
} Pog oM - Mg Jf%
0

D oMg - Mg + 1

(20)

(21)

(22)

(23)

(24)

(25)

«
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The entropy at any point (x,t) in region o or B may be found simply
by integration slong a particle path (since ¢ is the product of U
multiplied by flow time, d¢ = U dt), so that from equation (3a),

5t - 5 g ()
R fb( §> 29|, 2 1 (6, -2/3 f
= =8| at = Hn,~ + (—P ) cp dt
Dt - 1\T T @
S‘b}';s'j 0 g g7 %o 8
(t)
1
== 0 f cp At
D™ do g (26)

It 18 now necessary to consider the transmission and reflection
of the characteristics at the entropy discontinuity separating the
fluid which was initially at a high pressure behind the diaphragm from
that which was inltially at a low pressure shead of the diaphragm. These
effects are lmportant, even in a linearized solution, because of the
large differences in v vwhich may exist in the fluids on each side of
the discontinuity.

If the subscript o refers to conditions in a perfect fluid (that
is, immediately after diaphragm burst in real fluid) and the notstion
of figure 1 is followed, it is shown in appendix C that, if A< 1
and y 1is the same in both o and 8,

R R R

A_S=Sf'SC=A§°<1+m=<§E;S—“) (1 + ) (27)
(o]

Then,

8P _ e - P g Qe - Q

%o PBO - Pab 5% Qﬁo = Qag

o = Fa, + 9 - 9, L 23 ®Bof %o {E} - Sgo _ Sc - Say

Fao * 9o 7 (aﬁo>2 1|— R R

1+

a
a’O

(28)
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The second term on the right-hand silde indicates the change in the
charscteristic value which would occur as a result of reflectlons and
refractions even without any chenge in entropy.
the additional variation due to the changing entropy.

The third term evaluates

The reflections at the shock wave of the 1incident waves are of

higher order and may be ignored in this solution.

The followlng equations result from the definition of P,

Q

and S/R and subsequent linearization with the limitation to smsll

perturbations:

Q

ac & ag
u_f-@
ae 2&.€
2 s8-8
CHEE
— e
86
27 s-8,

a - S -5
14+ 2 2o} - O+ .
y~-1 & R
- S -9

1+ 2y & - 8o % ...

-1 & R
L.78eff-Po*t-9%) S-5

2 ag 8¢ R

(29)

(30)
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2 S-S
7T -2
% )
P - P - 5 -85
zl.;.%i( 0+Q QO)'- O+¢.--. (52)
ao 8¢ R

Consequently, the description of the flow at any desired distance
end time may be determined by combining equatioms (29) to (32) with
equations (18), (19), (24%), (25), (26), and (28) with the proper limits
of integration determined by geometry on the x,t plot.

It is to be noted that the velues of P, Q, and S/R mist also
be determined st the intersection of the entropy discontinulty with the
characteristic passing through the point (v or w) at which the flow
properties are to be determined. This step is required to compute the
transmission and reflections of the characteristic parameters as deter-
mined by equation (28).

In region a at the point xy = Wiy = Mact, (see fig. 1), the
equatlions become:

——n Uty
P, - K My + 1 Mtn
ae = %5 Ta—— f cg, d& (33)
Pa-Pg_ 4 1 _Mutn f (et at (54)
ae - FaD M, + 1+ 1Up To

% - %%, 1 -l f(l+ﬂ1‘%r-Ma)Utw

. e %Dy 1do tp e (%)
M A1
MUty
R e e, dt (36)
Q D D M, o+n -1 <i+qu—M;>U%w ¢
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cr,, 48 (38)

It should be noted that the neglect of the expansion fan in the
derivetion is reflected in the term 1 + wMy - M, eppearing in the

limits of integration of the sbove equations. Values of M, such that
the point w is in the expansion fan mske the factor 1 + nM; - My
negatlive and give only meaningless answers.

Equetions similar to those for region o eare obtailned for region B
at xy = Viy = Myagt, as follows:

Po - By _ g 1 M + 1 f(1+MB-cMV)U‘°v .

@D Mg+ n Ty £q 46 (39)
}‘_{S_—iv_gutv_
oM, -M
fy__‘_if.=¢PB% M“MS ;15M81 (MS P ) ery At (40)
8¢ oMg - - 1+Mﬁ—ch Uty

G- Gg 4 1M oM <1+MB-UMV)Utv )

QD oM - Mg + L o T

dg (¥1)
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———0cU
O - G " %o Ban = T - e " cp, 48 (42)
8¢ - 8¢ T 748D oMz - Mg + 1Ug tp
_EE_:;EEi. =1 + <Pc _ Eb) + G%f _ Qg> +
PBO - Pab Pao + Qﬁo
(7 - 1) =8/ 3 J<1+M13'UMV)Utv
¥ 5 D ¢SB o ch dg -
o
fag
1+Mg-oM ) Uty
Pe, L[)‘( b M‘D cp,, 4t (43)
Moty
- 8- - oMg-M
SVRJ=SVRSBQ=%¢SB 5 P cpy A8 (L)

The solution to the small-perturbation problem of shock-tube flow
has now been reduced to the evaluatlion of integrals of the form

L[Ef(g)dg where £ 1s simply a length formed by the product of the

flow time multiplied by the fluid velocity. Any enalytic or graphical
method gilving cp as a function of ¢ may be used In the evaluation
of these integrals.

In order to evaluate equations (33) to (44), it is necessary to
know the state of the boundary layer at a point In the shock tube which
is denoted by a corresponding point t{x,t) of the characteristics
dlagram. The boundary-layer problem is a "hybrid" of the Rayleigh
problem of the instantaneous acceleration of a flat plate and the Blasius
problem of the steady flow over a semi-infinite flat plate. It 1s
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similar to the Reyleigh problem in that, at a gilven instant of time, all
the flow between the shock and expension wave has been accelerated from
zero velocity to a constant veloclty but is different from the Raylelgh
problem in thet the fluid has been in motion for varying time durations.
It is similar to the Blasius problem in that, along & particle path in
X,t coordinates, the boundary lsyer increases rearward from the shock
or "leading edge," but 1s different in that the leading edge is not sta-
tionary. A solution to this hybrid problem for laminar boundary layers
was found in reference 3 for region B Dby reduclng the unsteady-flow
problem to a steady-flow problem by choosing a coordinate system fixed
to the shock wave. The problem then became the Blasius problem modified
for a nonzero wall velocity. In a similar menner a solution could be
found for region a 1if the expesnsion wave were assumed to have zero
thickness and the coordinate system were fixed to the leading edge of the
expansion weve.

For leminar flows, the solutions to the Reyleigh problem, the Blasius
problem, and the modified Blasius problem of reference 3 all show the skin
friction to be inversely proportional to the square root of the time that a
fluid particle in the free stream outside the boundary leyer has been in
motion over the plate. It should be noted that the constants of propor-
tionality are different in each of the above cases. No solutions to the
turbulent-boundary-layer equivalent of the Rayleigh or modified Blasius
problem are known to the suthors. One might assume, however, that the
state of the boundary layer at = point in a turbulent flow (as well as
in a laminar flow) over a flat plate with zero pressure gradient may be
expressed as a function of the tlme interval that the fluid has been in
motion over the flat plate or of the distance the outer fluld has moved
along the plate.

In the sbsence of a modified Blasius solution in region « and of
any solution whatsoever for the analogous problem of turbulent-boundary-
leyer flow in either o or £, an approximate method of evaluation for
the integrals mey be obtained by extending the sbove-mentloned time-
dependency assumption further and assuming that the linearized unsteady
flow in a shock tube has the same properties as an equivalent steady
flow defined in the following manner: The properties of a lamina of
fluid in the shock tube which has been in motlon with a velocity U,
for s time t are equivelent to those of a lamina of fluld which has
progressed rearwsrd for a period of time +t from the leading edge of
a semi-infinite flat plate in a steady flow with free-stream velocity Up.
Under these conditions ¢ becomes the dlstance from the leading edge of
the flat plate.

The introduction of this assumption reduces the small-perturbation
solution to the simple eveluation of the integral of the skin-friction
distribution along a semi-infinite flat plate in steady flow. This
integral may be evalueted if the relationship between cy and £ is
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prescribed either in analytic form or as a curve of cp plotted against
£ or of cp against Re. The former method of relationship will

usually permit evaluastion of the integral in closed form, whereas the
latter method may require grephical integration.

A theory has now been obtained for small-perturbation flow in a
shock tube with the following essumptlions:

(1) Variations from perfect fluid flow shall be small .
(2) Averaged velues are used for quasi-one-dimensional flow,

(3) Averaged values of p and U which identically satisfy the
continuity equation are slso assumed to satisfy the momentum equetion.

(4) The frictional dissipation is approximsted as the product of
the sverage velocity times the wall-shearing force,

(5) The perfect-fluid characteristic net, velocities, densities,
and so forth are used to obtaln linearized wvalues,

(6) The expansion fan is treated as a "negative shock wave" in that
the final values of velocity, pressure, and so on, are assumed to exist
immedigtely after the leading edge of the expansion fan.

(7) If numerical eveluation of the theory is performed on the basis
of equivalent-flat-plate steady flow, the following assumptions are also
introduced:

(a) The steady and unsteady skin frictions are equal for =
£luid which has traveled a given dlstance over a flat plate in
steady flow and for a fluid which has traveled the same disteance
along the shock tube in unsteady flow.

(b) The boundary leyer is small relative to the width or
height of the shock tube,

EXPERTMENTAT, APPARATUS AND PROCEDURE

Experiments to determine the wvalidity of the theory were performed
in e high-pressure shock tube 2 inches high by L% inches wide in the

Langley gas dynamics laboratory. Air at room tempersture was used for
both high- and low-pressure sections of the shock tube. Measurements
of shock velocity and pressure-time variation were taken at various
points along the shock tube.
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The low-~-pressure side of the shock tube was at room conditions;
whereas the high-pressure chamber was filled to pressures of 45, 70,
95, or 250 pounds per square inch gage. FEither one or two sheets of
soft brass shim stock 0.00125 or 0.0015 inch thilck was employed as a
diaphragm. The number and thickness of the brass sheets were determined
80 that the dlaphragm was near its breaking stress at the particular
pressures of the test. Consequently, optimum diasphragm burst would
result when the point of the rupturing mechanism plerced the center of
the diaphragm. It has been found that imperfect diephragm bursts will
result in both increased shock attenustion and scatter of experimental
data.

The shock velocity was measured at distances of 3.23, 5.23, T7.23,
9.18, and 11.18 feet from the disphragm by inserting shock-tube sections
of various length between the diaphregm and the glass-walled test sec-
tion. A block diagrem of the experimentsl apparatus is shown in fig-
ure 2. Velocity wes determined from measurements of the time required
for the shock wave to traverse the 1.206 feet between the two light
beams of the optical systems. (See figs. 2 and 3.) Each optical system
consisted of a direct-current sutomobile lemp with line filsment alined
vertically at the focal point of = two-inch-diameter, seven-inch focal-
length lens. The light emitted from the lens was masked to a vertical
sllt approximately 0.030 inch wide and 1 inch high. Stray light on the
upstream side of this beam was cut off with a sharp knife edge. The
beam then passed perpendicularly through the test-section window and
impinged on the edge of -a second knife edge sbout ten inches from the
test-section window. When the plane shock wave reached the upstream
edge of each beam, light was refracted off the second knife edge onto a
phototube. The resulting signal of each phototube was amplified by the
circuit shown in figure L. The output pulse from each thyratron (2D21)
was used to trigger one chasnnel of an eight-megacycle counter chronograph.
The pulse from the upstream system triggered the chronograph "start"
circult end that from the downstream system, the "stop" circuit. (See
fig. 2.) The time intervel could thus be measured to within
11/8 microsecond.

Pressure~-time records were obtained for the four nominal pressure
raetios at a distance of 8.13 feet from the diaphragm by employing a
flush-mounted capacltor-type pressure pickup (Rutishauser Electronic
Pickup Indicator, Type ST-127A) and associated apparatus, as shown
schematically in figure 2. 'The signal from fluctuatlions on the pressure
plekup was fed into the Y-axis of one beam of a four-channel cathode-ray
oscillograph, and the resulting deflection of the beam was photographed
by an NACA synchronous drum cemera rotating at 1,800 rpm. A 1,000-cps
sine-wave timing trace was fed into another chamnel of the osclllograph
in order to obtain a time base.
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The oscillograph beams could be turned on and off electronically by
application of a sulteble signal to the Z-axis of the oscillograph. This
slgnal was obtained from a piezoelectric crystel pickup, a preamplifier,
and an NACA electronic shutter circuit. (See fig. 2.) The crystal pickup
was located 6.4 feet from the diaphragm so thet the oscillograph would
record the ambient pressure ("zero trace") before arrival of the shock
wave. The time durstion of the oscillograph trace was adjusteble up to
20 milliseconds.

A minimum of five test runs was made for each combiration of nomi-
nal pressure ratio and distance to the median position of the velocity-
measuring system. The chronograph time interval, the shock-tube-wall
. temperature, and the barometric pressure were recorded for each test.

Pressure-time records at x = 8.13 feet were tasken, along with
simultaneous veloclty measurements at & median position of 9.23 feet.
The aforementioned deta were recorded end, in addition, a static cali-
bration of the pressure gage was performed for each run. This calibra-
tlon was mede by epplying pressure to the shock tube in predetermined
Increments, ard at each pressure level the osclllograph Z-axis was ener-
gized so that the static-pressure calibration trace of the gage could be
prhotographed to place a pressure scale on the drum—camers-film record.

RESULTS AND DISCUSSION
Evaluation of Experimental Datsa
The experimental shock strengths shown in figure 5 were determined

from the time interval At seconds for the shock to pass the slits of
the measuring station a distance Al feet spart as follows:

2
PvS - 27 <AZ/At> _ 7 - 1 (45)
P ¥ + 1\ & vy + 1
which becomes, for vy = 1.40 and dry air,
Pvg  L.859 x 1o-l*/m)2
= — - 0-166 )‘{'6
B T (&t 7 (16)

The pressure was plotted at a value of x halfwsy between the phototubes.
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The experimentel data required some slight adjustment before it could
be presented in figure 5, each part of which represents a common diaphragm
pregsure ratio or theoretical perfect-fluid shock pressure ratio. Since
the tests pertinent to a given nominal dlaphragm pressure ratio were msde
with the high-pressure chamber at the same gage pressure, varistions in
atmospheric pressure from time to time caused a varistion in disphragm
pressure ratic. The required adjustment was made in accordance with the
relations that follow (notation of fig. 1).

Since the equation relating shock pressure ratio to disphragm pres-
sure ratio (see refs. 3, 4%, and 7) may be expressed in functional form as

Pe _ (BB
o f(pm>o (47)
then
D
a =&
P”=f@% (18)
PB D,
- o)
Px
and

é) i) Xp ( i)ref ( i)exp (

ll 25 _<i__ =|f =& - (== 9)
B,/adjusted to P f'\D P

< re%j'.S pe/p ©

The reference vaiue of pe/poo for each nominel diaphragm pregsure

retlioc was teken as the value existing when the pressure-time records were
obtained by the capacitor pickup.

Since each of the velocity symbols represents an average (on a given
dsy) of from five to ten test runs, in which the scatter in eny set teken
on the same deay is less than the scatier smong averages of data teken on
different days, the reason for the discrepancy between averages at the
game distence and same theoretical pressure ratio is unknown., Temperature,
viscosity, and humidity corrections, determined from the linear theory
and applied to these experimental points, are insufficient to make the
averages colncide. The cause of the apparently high experimental pres~
sure ratio at x = 3.2 feet (fig. 5) is also unexplainable at present.
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The pressure-time traces of the capacitor pickup located 8.13 feet
from the disphragm station are shown in figure 6. The linear-theory
values computed at x = 8.0 feet are plotted (circled points) for com-
parison at millisecond intervels after the arrival of the shock. The
shock pressure ratio obtained from concurrent velocity data for each
particular run fells on the initial theoretlcal point within the accuracy
of plotting. The velocity data, obtained at x = 9.23 feet, were adjusted
to 8.13 feet by draswing a curve through the velocity point at 9.25 feet
parallel to the experimentsl curves of figures 5(a) to 5(d); thereby
compensation was provided for any scatter in the particuler test.

Evaluation of Llnear Theory

Constants employed.- The equations of the linear theory are evaluated
on the assumption that standard atmospheric conditions exist in the low-
pressure chamber unless specified otherwlse. Temperature recovery fac-
tors r of 0.90 and 0.85 are used for the turbulent and laminar boundary
layers, respectively. A Prandtl number P, of 0.7l and a value of the

Blasius constant B of 8.70 are assumed.

The temperature-viscosity relationship

T 203%,2 1.5
B _ o *225.2 (_T_) (50)
Ho T + 223.2 \L

o]

was expended for computational convenience to give the approximation

i, (E.)O‘BO (51)

T

Ll
Heo 0
which 1s considered valid in the tempersture range near 5200 Rankine.

Relation between ep(t) and E.- Various theoretical, empirical,
end experimental relations are availsble for relating cf to § for

evaluation of the integral ce(t)de. If the essumption of an

equivalent-flat-plate steady flow is employed and the boundery~layer
profile obeys the law ‘

Y. (%)l/ " (52)
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it is shown in appendix D for an incompressible turbulent boundary layer
end for n and B iIndependent of ¢ that

2 2|
n n+> <¥,)n+3
c =2 —
£(8) {;; + 2)(n + 3)B" v
2 ' (53)
ce(e) = N%)“”

Then, the integral may be evaluated in closed form as

2 n+l -2
g —
[ eras - ()™ M&ﬂ”} (5t)

gl n+ 1 gl

Similarly, if the equivalent steady flow is used with an incompressible
leminar boundary layer (see ref. 9), the solution is

cp(E) = 0.664<UL§>1/2 (55)

3 1/2 o
f 2 cp dE = 0.661+<%> / 2E1/2J
£ €1

1

- 1.328(%)1/ 2 El/ﬂ zj | (56)

If the moving wall or modified Blasius solution of reference 3 is
used, the expression for cf(é) in reglon B reduces to

eslt) = - A—i ”—S(—V-)l/ : (57)
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in which Ag/Al are constants eveluated in reference 3. Then

3 g2
fg 12 cp(t)at = _2@1%)%(%)1/ ggl/ﬂ N (58)

Since reference 3 does not conslder region «, no equivalent expression
for this region is available. However, if the same general assumptions
were applied to region o as were applied to region B, evaluations

of cp(E) would agein yield an equation in which cp(E) 1is proportionsl

to <Ui§->l/ 2

In order to determine a possible correct relationship between cf(g)

and & to be used in evaluating the linear theory for the range of
experiments covered in thils paper, the curves of theoretical and experi-
mental shock pressure ratio against distance of figure 5(c) were used.
In addition to the experimentel points obtained for a nominal diasphragm
pressure ratlo of T7.455 (shock pressure ratic 2.523), theoretical curves
are plotted by assuming an equivalent steady flow for (a) laminar skin

eriction (cp = 0.664R,™Y/ 2), (b) turbulent skin friction (ce = 0.05818, /3,
n = 7)'with and without heat-transfer effects; and (c) an experimental

curve (from fig. 88 of ref. 10) giving the integrated velue of ce,

which includes the effect of transition of the boundary layer from laminar
to turbulent. Since, as mentlioned previously, the modlified laminar
Blasius solution of reference 3 was not evalueted in region a, no theo-~
retical curve can be drawn for the corresponding cg(t). However, due

to the laminar assumptions of reference 3, the attenuation in shock pres-
sure ratio would be proportional to VX if cp(t) were evaluated in

region o« with similar essumptions to those used for region B. Con-
sequently, in order to determine whether such a modified Blaslus treat-
ment could possibly yield the correct relatlion between cp and &, &
va PEO
curve of the type T 5 - (Constent) VX was fitted to the experi-
= By
mental date at x = 9 feet and the constant was found to be 0.0626.

This resulting empirical curve, ?E- = 2.52% - 0.0626\x%, is also plotted

[c¢]

in figure 5(c).
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Tt is evident from an inspection of figure 5(c) that best agreement
between theory and experiment is obtained either from the turbulent skin-
friction law including heat-transfer effects or from the experimentally
determined skin-friction curve of reference 10. The reason for the simil-
larity of the shock pressure curves obtained by these two methods is

simply that, for Re < 20 X 106, the turbulent skin-~-friction law
<;f = 0.0581Re'l/%> for a value of n = 7 vwhen integrated closely

approximates the curve in reference 10 except at low values of Ry,

where the laminar and transition effects are apparent. These latter
effects result in the inflection in figure 5(c) of the curve based on

the drag curve from reference 10. Inasmuch as these two skin-friction
curves result in glmost the same theoretical shock-pressure attenuation,
elther could be used for further evaluation of the theory. However,
gince an analytic closed-form integral is more convenient for computation

ug) /3
in this case, the skin-friction law cf = 0.0581< > was used for
evaluation of the linear theory for the other figures in this paper.

Tt is also evident from figure 5(c) that the equivalent steady-
flow laminar-boundsry-layer skin friction predicts shock attenuation
mach less than that measured. TFurthermore, the empiricel curve (atten-
uation proportional to VX) - which might be said to represent the shape
of laminar solutions in general, including the modified Blasius solution -
does not indicate the trend of measured shock attenuation. Thus, it
might be inferred from these conditions that the boundary layer is turbu-
lent in most of the shock-tube-flow regions o and  at these values

of Rs-

Comparison of Theory and Experiment

Shock attenuation with distance from diapbragm.- The theoretical
shock pressure loss and shock attenuation coefficients are presented as
functions of perfect-fluid shock pressure ratios in figure 7. These
relations are used to predict the attenuation of the shock with distence
traversed from the disphragm stetion in figure 5 and the theoretical
results are found to be in good agreement with the experimental data.
Although the theoretical points are computed for standard atmospheric
conditions, the experimental pointe are adjusted to the nonstandard atmos-
pheric conditions existing when the pressure-time runs were made. In
order to determine the magnitude of error so introduced, the theory was
evalusted for the nonstanderd (T = 542°, p = 14.7 1b/sq in.) conditions
for the diaphragm pressure ratio of 17.915 where the error introduced
would be largest. The adjusted theory indicated by the dashed curve of
figure 5(d) shows a slight increase in attenuation which agrees somewhat
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better with experiment than the "standard atmosphere" theory. The
ad justment for nonstandard conditions would be even less for the other
pressure ratios. (See fig. T(b).)

Use of the linear theory with a value of cp = 0.0581Re'l/5 appears
in figure 5 to overestimate the attenustion slightly at the lower shock
pressure ratios (below 2.5) with the opposite effect apparent at higher
ratios. This trend could be due to any of a number of sgimplifications
made in the theory and computations. Two of the more obvious factors
are the Reynolds number and compressiblility effects. As the diaphragm
pressure ratio Increases, the Reynolds number of the flow per unit length
increases. Since, for the computations of this analysis, cp 1s assumed

proportionsl to Rg~2/(2+3)  (ynich 1s equal to Re=1/5 for n =7

and since steady-flow experiments in general indicate a trend of cp
proportional to smeller negative powers (larger n) with Re increasing,
there is the possibility that values of n should be increasing some-
what with Re and diaphregm pressure ratic. Compressibility would tend
to reduce the ratio of the compressible cp to the Incompressible cf

and consequently would tend to reduce the attenuation as the flow Mach
numbers increased with diaphragm pressure ratio.

The neglect of the spreading of the expansion fan must &lso be con-
sidered, since this omisslon must introduce an error whieh Increases
with shock pressure ratio (expension-fen size).

Other possible factors open to question are the use of comstant P,
the evaluation of heat transfer on the basis of v of the fluld in the
center of the flow (for example, not at some intermediate temperature
between the wall and stresm), and the use of r = 0.90(0.85). However,
because of the assumptionsg in the one-dimensional averaging process, in
the linearization procedure, snd in the agpplication of an equivalent
steady-flow boundary layer, these points are minor refinements to the
theory in the experimental range consldered. Nevertheless, sultable
corrections should be gpplied as higher disphragm pressures are used if
good correlation is desired.

The curves of figure T, which were computed on a basls of ag = g,
end cp = 0.058136’1/5, summarize shock attenuation prediction by the

linear theory for shock pressure ratios up to 10. For cp proportional
to Re'z/(n+5) this curve is of the type

n+1

2 on
2 g(n, 39) <ﬁ)n+3 QiLrB (59)

P

o]

oo o]
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where Ap 1s the shock-pressure sttenuation at & distance 1 from the

diaphragm station. According to this equation the attenuation at a

constant number of hydreulic diameters from the dlaphrasgm would vary as
2

g

the shock-tube Reynolds number <—-—) . This relationshlip is dis-

Yoo

cussed more fully in a subsequent paragraph.

Variation of pressure with time at a given distance.- Pressure-time
curves obtained experimentslly by the capacitor pickup located a distance
of 8.13 feet from the diaphragm station are compared in figure 6 with
theoretical results computed (see fig. 8) for a distance of 8 feet and

cp = O.O58lRe’l/5. The error introdﬁced by the variaetion 1in distance

is sbout 1 percent of the attenuation pressure change and may be ignored.
The experimental shock pressure was also obtalned for each run by com-
puting the pressure at 9.23 feet from simultaneous velocity measurements
and then interpolasting back to 8 feet along = curve parallel to the
experimental curve of attenuatlion ageinst distance. These velocity
measurements fall on the theoretical measurements within the accuracy of
the plotting of figure 6.

Both theoretical and experimentsl curves show a pressure increasing
wlth time. This increase has also been noted when NACA miniature electri-
cal pressure geges, as well ag plezoelectric pressure pickups, have been
employed. The initiel pressure rise across the shock determined from
the velocity measurements, as well as from the theory, appears to fall
below the average of the initisl damped high-frequency oscillations of the
condenser pickup pressure-time curve. However, the dynamic response of
the Rutishauser system is not known, whereas the shock-veloclty measuring
system has a known high precision. Conseguently, the use of the initial
shock-velocity pressure point in conjunction with the Rutishsuser records,
after the high-frequency oscillstions have subsided, appears a loglcal
cholce to glve a better representation of the actusl pressure-time phe-
nomena. Such an "experimental"” curve agrees very favorably with the pres-
sure rise predicted by the linear theory.

Variation of other parameters wlth time st a given distance.- Fig-
ures 9 to 12 show the predicted variation with time of average sonic
speed, fluid velocity, densiby, and Mach number at x = 8 feet. The
change of these parameters with time increases with shock strength, since
the skin friction and the temperature difference between walls and fluid
increase with shock strength for low velues of shock pressure ratios.
These aforementioned quantities were not measured in the experiments of
this investigetion; however, the phenomena of density increassing with
time were found experimentally by the use of a chrono-interferometer end
are reported in reference 8. The behavior of the average particle velocity
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has not been ascertained. An increase in speed of the leading edge of the
mixing zone which replaces the entropy discontinuity between the hot and
cold gas regions of the theoretical flow has been reported in reference 7
and elsewhere. However, the spparent velocity increase of the leading
edge is also attributable to turbulent mixing since i1t is known that the
width of the zone increases with time. Consequently, the velocity of the
leading edge does not give a true indication of the average particle veloc-
ity due to the masking effect of mixing. An increase in Mach number with
time was found experimentally in reference 3. Also, an attempt to meas-
ure sound speed was reported in reference 3, but the reported result of
constant sound speed with 12 percent variation over a 100-microsecond
interval does not appear significant in view of the procedure employed
end, in addition, the predicted linear-theory variation (fig. 9) is less
than scatter of the data of reference 3.

Correlation of Wave System end Flow Phenomena

Wave generstion and identification.- There are two ways to consider
pressure waves: The more familiasr method is that of an observer in a
fixed position who (with waves assumed to be coming from only one direc-
tion), upon detecting an increasing (or decressing) pressure with time,
recognizes the arrival of a compression (or expansion) wave. The other
method is that of an observer, traveling with the speed of the wave,
who (waves again assumed to be coming from only one direction), upon
detecting an increasing pressure with time, recognizes the generation
of compressions. This moving observer megy also determine the type of
wave with. which he is associated by ascertaining at & given instant of
time whether the pressure is lower (or higher) shead of the wave, in
which case he is traveling with a compression (or expsnsion) wave.

The stetionary observer will detect waves only in unsteady flow,
whereas the moving observer will detect the growth of waves 1n a steady
flow. As an example of the latter case, consider the pressure drop of
e steady flow of air through s friction zone. It may be treated as &
system of downstream (P) waves which, although of zero strength before
entering the zone, become stronger expansionwise the farther into the
zone they traverse. Simultaneously, there i1s a train of upstream (Q)
waves which, also of zero strength initielly, grow into stronger com-
pressions as they travel up into the friction zone. These two systems
of moving waves combine to form a standing wave, invariant with time,
or a pressure drop slong the flow. Consequently, a fixed observer would
recognize no moving waves in the flow. It might be noted that these
trains of waves are the reflections of the waves which produced the
steady flow from qulescent air.

Cognizance should glso be teken of the fact that the itwo observers
would disagree on thée type of supersonic Q waves in a flow. Consider
an unsteady compression wave moving upstream asgsinst a supersonic flow
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but actually being washed downstream relative to a fixed coordinste

system. The traveling observer looks shesad (upstream), sees lower pres-

sures, and so recognizes & compression wave. The fixed observer, how- k
ever, first encounters the trailing edge (high pressure) and then at a

later instant the leading edge (low pressure) of the wave and apperently
recognizes an expansion wave, since the pressure falls with time. Con-
sequently, in supersonic flow the fixed observer must make additional

velocity measurements in order to interpret the wave sign correctly.

The unsteady waves generated in the various regions of the shock-
tube flow can best be understood by consideration of the following equa-
tions which result from equations (1), (2), (3), end differentiation of
equation (31)

5 S
L% _1la R
ag O ~ ¥ 8¢ §
~la21%4 218U
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»
=gi - T -2/39_
5 o Ucf{By 1)M+1]M+Pr T} (60)

s 2
It is evident that the term EEB is not connected with pressure or

P
veloclty waves but merely accounts for the change in {Q} =53 t U due

to traversel of the characteristlic through fluld of different entropy.

The pressure-wave generation is represented by the change in the difference
of these terms and is a result of the skin-friction drag end heat transfer
as expressed in the first and second terms, respectively, within the braces
on the right-hand side of equation (60).

If equation (60) is now examined from the traveling observer's

viewpoint, which is more approprilate since §é€l represents the change

with time as noticed by the travellng observer, the following facts
become obvious:

(1) Upstream (Q) compression wsves are generated by the effects
of both heat addition to the fluld and skin-friction drag.
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(2) Downstream (P) compression waves are generated by heat addition.

(3} Downstreem (P) expansion waves are generated by the skin-friction

dreg 1f M < —2
y - 1

(4) Downstream (P) compression waves are generated by the skin-
friction drag if M >

This last result (item (L4)) was unexpected since the drag is usually
considered as having a braking or decelerating (expansion) effect on
the fluid shead of it.

The following facts might be noted at this point concerning the
heat-transfer and skin-friction effects. Expansion waves will be gen-
erated In o for shock pressure ratios up to sbout 5.9 when air at
initially uniform temperature throughout is used on both sides of the
disphragm. For pressure ratios gbove that value, compressions are gen-
erated. Also, heat transfer ig to the fluld in region « below shock
pressure ratlos greater than 7.5; above this ratio the adiasbatic recovery
temperature begins to exceed the wall temperature for r = 0.9.

. For M < - IS — the following conditions then apply for T = Te =
Twall‘ In reglon o heat 1s being transferred to the fluild. Thus,
the effects of heat-transfer and skin-friction drag are additive with
regard to the generation of Q compression waves. However, in regard
to the generation of P waves, the effects are in opposition since the
heat transfer tends to generate compressions and the drag to generate
expansions. In region B heat is being lost from the fluid to the
walls. The heat traensfer and drag are, therefore, cumulatlive with respect
to the production of P expansions and in opposition with respect to
Q waves. The stronger waves genersted will, consequently, be Q compres-
sions in reglon « and P expansions in region B, where the drag and
heat-transfer effects are cumulative.

Solution for shock pressure ratio of 2.6.- The explanation for the
flow behavior may now be considered with these points in mind. The plot
of x against t for a shock pressure ratio of 2.6 is shown in fig-
ure 13. Adjacent to various pointe are indicated the values of P', Qf,
a', U, and p. The primed quantities refer to the values that the param-
eters would have if an imaginary lamina of fluid with entropy equal to
that of the unperturbed flow, but with velocity and pressure identical
with the local perturbed flow, were inserted in the flow at these points.
In other words, let

1 ! 1 &P 1
=% _ _ 1 o Ll a R (61)
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and so on. Then since, by use of the imaglnary lamina, the entropy term
makes no contribution, P' represents only the pressure and the velocity
wave effects.

The reason for the decrease 1n shock pressure with time is now evi-
dent. Just behind the shock the overtsking P expanslon waves are growing
in strength (P' decreasing) in proportion to the time interval that 1t
takes for the P characteristle to traverse the regions o and B; and,
of course, thils time intervel increases as regions o and B diverge
with time.

In figure 13, the values of P' on the B side of the entropy
discontinuity are gradually diminisbing with time from the velue
P'O = PBo = 6.51;513300 as week expanslons are generated 1n region o.

These expansions are weak because the skin-frictlon expansion effect is
only slightly stronger than the opposing heat-transfer compression effect.
The value of P' slowly decreases with time along the entropy discon-~
tinuity as the region a in which the waves are generated becomes larger.

In region B, however, both the skin frictlion and heat transfer
combine to generate strong P' expansions which increase in strength
(P' decreasing) rapidly with distance traversed in B. Thus, the first
P characteristic shown in figure 13 has experienced a decrement in P’
from P, = 6.5451 of only 0.0054 at the entropy discontinuity and of

0.1167 when 1t overtakes the shock. The second P characteristic shown
has a decrement in P' of 0.0105 at the entropy discontinuity and of
0.2032 when it finally overtskes the shock. Note the much greater
expansion generated in region B.

The cause of the variation of pressure with time at a glven station
is not so obvious but may be described in a simple mauner for the par-
ticular pressure ratio of 2.60 as follows (the explanation is not gen-
eral since the signs of some of the waves may change with diaphragm
pressure ratio): At a given value of Xg, as time increases the inci-

dent downstream characteristics have traversed longer dlstances in o
and shorter lengths in p. Now since the drag and heat transfer do not
reinforce one another in «, whereas they have an accumulative effect in
B on P waves, the effect of decrease in traversal time of § more
than offsets the effect of the increase in that of «.

It figure'15 is again used, the following tebulation can be made for
the values of the variation in P' along the characteristic for the four
characteristics. Subscripts denote regions responsible for the varilations.
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Characteristics
line 8Py, BP'B =oP!
(fig. 13) (2)
1 -0.0054 | -0.1113 | -0.1167
2 -.0105 -.0602 -.0707
3 -.0179 -. 0255 -.043L
| i -.02%2 -« 00T -.0279

a&Vglue includes reflection at entropy
discontinuity.

Consequently, even though expansions are being generated in o eand @,
to a fixed observer at a given Xg, the incident downstream waves appear

as compressions in that the value of the parameter P' 1is increasing
with time simply because its reduction from the constant value P, 1s

decreesing with time. In other words, the expansion effect generated
along the P characteristics up to a given Xp is decreasing with time
although the net expansion effect up to the shock wave is increasing
with time. TIn addition, the incident Q waves in region p are compres-
sion waves (for example, drag effect is larger than heat-transfer effect

for this particular case) the strength of which increases with trav-
ersal distence (time) from the shock to a fixed xg. The result of

these incident waves is thus a pressure rising with time.

The average velocity is increasing with time at a given xp because

1
the "effective compressions,” that is %%;> > 0, downstream are stronger
x

then the upstresm compressions. The average velocity of the entropy
discontinuity decreases with time because stronger expansionsg (Lower
velues of P') are overtaking it from behind while simultaneously stronger
compressions (higher values of Q') are meeting it from shead. Both waves
are decelerating influences. The average velocity Jjust behind the shock
is, of course, decreessing with time and distance. For this particular
case, the perfect-fluld velocity is never attained in region 8 for

t > 0. '

Although the primed quantities of figure 13 give correct values of
pressure and aversged velocity, the value of a' 1s not an indication
of the correct average sonic speed since the primed gquantities are
always evaluated in en imaginary fluid lamina of constent entropy. If
the entropy correction were applied, it would be found that the average
sonlc velocity (temperature) is decreasing with time in region B
because the effect of the heat transferred out of the fluid is greater
than the®combined effect of the compression waves and frictional dissi-
pation. In other words, although the strength of the incident "compression'
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waves increases with time et a glven x, the fluid arriving at that x
has been in motion for increasingly longer periods and more energy is
lost by heat transfer to the walls, so that the net result is a decrease
in temperature.

Assessment of Various Assumptions

The favorable correlation between experiment and linear theory sub-
stentiates the use of & small-perturbstion approach. However, the limi-
tations of the assumptions used in the analysis must be recognized and
welghed carefully before application of the theory to a particular
problem.

One of the most precarious assumptions introduced wes the averaging
process, whereby the quasl-one-dimensional flow was treated as a pure
one-dimensional flow in which averaged values of p and U were defined
as those satisfying the continuity equation integrated over a cross sec-
tion of the flow. It is known that this assumption will Introduce errors
in the momentum equetion. These errors will be smaller for "full" veloc-
ity profiles and, if the boundasry-layer profile is assumed not to change
with flow travel, will increase in magnitude as the ratio of cross-
sectional average velocity to maximum veloclty decreases. The errors
will also increase as the velocity proflle changes shape with flow dis-
tance. TFor example, consider an incompressible steady flow of fluid
entering a pipe with a purely one-dimensional rectangular velocity pro-
file which later becomes a parsbolic velocity profile some distance along
the pipe. The flow has a constant average velocity, yet it requires a
pressure drop in excess of that needed to overcome friction to account
for the changed velocity profile. Consequently, the averaging process
employed in deriving the basic equations may limit the applicaticon of
the theory to boundary layers which are small relative to tube height
and width or which have nearly constant shapes along the tube length.

In eddition, if the skin-friction integral is to be evaluated by
the use of an equivalent-flat-plate steady flow, there is introduced
the assumption of a shock-tube potential flow bounded by a viscous bound-
ary layer. Even without the restrictions of an averaging process, this
assumption requires & boundary-layer thickness 8 small in relation to
the dimensions of the shock-~tube width. Thls restriction was violated
in the numericel evaluation of the theory when applled to the experi-
mentel results, since the theoretical value of 5 at the entropy dis-

continuity wes approximately 1 inch in the 1%.. by 2-inch shock tube for

x = 8 feet for the worst cese (shock pressure ratio 1.94%). The fact
that agreement was still good between theory and experiment even under
these conditions indicates that this boundary assumption mey be viclated
merkedly without severely penallzing the accuracy of the theory. Of
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course, when the boundary layer develops to such a degree that it fills
the tube and so-called "pipe flow" arises, then the character of the
flow will be so altered that a new approach based on pipe flow would
probably be more appliceble than the boundary-layer and potential-flow
epproach of the equivaelent-flat-plate steady flow.

The assumption of a flow model in which velocity and thermal
boundery-layer effects are inecluded by averaging across the channel area
is open to further question. This model presumes instentaneous transfer
of heat, momentum, and so forth, from the fluid adjacent to the wall to
that in the center of the flow. In reality, however, either molecular or
macroscoplc motion of the particles or transverse pressure waves is nec-
essary for such a transfer so that the influence is felt at the center
later then at the walls. Such a delay is usually of second order and
can be ignored.

The accuracy of the approximation for the frictional dissipation as
equal to the product of wall shearing stress and averaged velocity cannot
be verified unless the velocity profile is known; however, this approxi-
matlon should be good for many cases and is exact for both true one-
dimensional flows and Poiseuille flows.

The linearization of the differential equations prevents the appli-
cation of the theory to large deviations from the theoreticsl flow. The
degree to which this restriction may be stretched is still unknown since
the experimental data compared with theory hed variations from perfect
fluid flow only up to fifteen percent.

In the analysis it was assumed thet the leading edge of the expan-
sion wave traveled with a velocity -a. and that immedistely behind the

leading edge the fluld and sonic velocities were U and 8q, Trespec-
tively. Since the sonic speed varies from ac to ay end the fluid

velocity from O +to U as the expansion wave is traversed, the sbove-
mentioned assumption will introduce an error which will magnify as the
expansion fan becomes larger at the higher diaphragm pressure ratios.
Furthermore, 1f a more exact treatment were desired for the expansion
region, it would be necessary to consider an equivalent accelerating
steady flow with a favorsble pressure gradient.

In the numericel evaluation of the theory, it was assumed that the
functional form of the skin-friction dependency on the flow length ¢
was ldentical for the unsteady flow in the shock tube and the equivalent-
flat-plate steady incompressible flow. This assumption has no rigorous
argument. Some support may be found in the similarity of the values
of c¢p obtained from the Rayleigh, Blasius, and modified Blasius solu-

tions. For laminar boundery layers all three solutions give functional
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relationships, cp = (Constant)Vé%, but the constants differ. No com-

pareble solutions are known for turbulent boundaxry layers. Untll some
further knowledge is obtalned eboult unsteady boundary lesyers, 1t appears
that this assumption of the equivalency of steady and unsteady flows
must be accepted principally on the basis of agreement between theory
and experiment in this range.

When the numericel evaluatlon of the theory is based on incompressi-
ble boundary-lsyer theory, there is, of course, a source of error as dis-
cussed earlier. However, this error can be elimingted by the use of
closer ccmpressible boundary-leyer spproximations in the evaluation of the
cr(t) integrals. Tt should be noted thet the effect of the compressi-
bility correction is not as large as might first be expected. Since the
Mach nunber in region § cennot exceed 1.89 for air, although it may go
to infinity in region «, the correction to ¢y for compressibility will

be much larger in o. However, vg becomes increasingly less than Vg

a8 My 1ncreases, so that the Influence of region o decreages. In
addition, the compressibility effect will be less on the shock-wave
attenuation then on the varilstion of the flow parameters with time at a
glven station since the importence of region « on 3P' changes as
discussed in the previous sectlon.

The equivalent-steady-flow model does not give a true picture of the
reglon nesr the entropy discontinulty even 1f turbulence is neglected.
Since v 1is different on easch side of the discontinuity, the model yields
different boundary-lsyer thicknesses or an impossible discontinucus bound-
ary leyer across the discontinuity. This effect, plus the neglected heat
transfer across the entropy discontinulty, apparently is small when
examined in the light of the experimental results.

Application of Theory in Shock-Tube Design

The compromise required between aerodynamic and mechenlcal design
of shock tubes for use at high temperatures end Mach numbers becomes
evident on scrutiny of the functional form of the equation relating the
ratio of the sttenuation shock loss or pressure rise (or fall) with time
to the ambient pressure. Thls equation, for cp proportional to

Re—Q/(IH-B) , is
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At a given value of PB/Pm: in order to have relatively long flow dura-
tions, the ratio. Z/aoo should be large; but insulating problems ususlly

dictate a, in the atmospheric range so that 1, consequently, becomes
large.

Then in order to minimize the timewise variations at a given x, the
ratio Z/D should be as small as possible, a requirement prescribing
maximum evaileble D. TIf D is large, mechenical strength of the shock-
tube walls will limit the peak shock pressures so that, for large values
of PB/Pw’ it will be necessary to meke p, small. A small value of Do,

will in turn cause v, to increase so that the reciprocal of the Reynolds

number Vo /8D rises and with it the attenustion and flow fluctustions.

Consequently, the design of the shock tube will be a compromise between
mechanicel and serodynemic design, with the 1/D term (which has a more
powerful exponent than the Reynolds number) probably being the principal
aerodynamic consideration.

CONCLUDING REMARKS

Comparison of theoretlcal and experimentsl results on the flow in
shock tubes appears to substantiate, in the range of the experiments,
the method of analysis employed. The application of the basic concepts
to much higher pressure ratios and larger perturbations appears logical.
However, in such an application, refinement of the linearized procedure
may be required to compensate for the crudity of some of the assumptions
or it may even be necessary to revert to s step-by-step integration of
the basic nonlinear differentisl chearacteristic equatlons and to employ
simulteneously skin-friction coefficients based on local velocities.

In addition, the basic characteristic equatlons themselves may require
further modification as the shock strength increases to values where
dissociation, ionization, and relaxation effects become important. Below
the shock strengths where these last-mentioned effects occur, the trends
predicted by the linear theory and evaluated in this paper should apply

although their magnitude is dependent on the form of skin-friction law
assumed.

Although an equivalent steady-flow turbulent boundary-layer sgolu-
tion gave good agreement with the experimental data, eapplication of the
theory to cases where the flow Reynolds number is lower than that of
these experiments may require the use of laminar boundary-layer solu-
tlons. Such lower flow Reynolds numbers would arise either from shocks
weaker than those of the experiments advancing into air at atmospheric
pressure or from shocks of the same or higher pressure ratio advancing
into alr below atmospheric pressure. It should also be noted that, at
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high Reynolds numbers (> 2 x 107), the evalustion of the skin-friction

coefficient as 0.0581 X (Reynolds number)'l/5 becomes inaccurate and
should be replaced by & more gppropriate relation.

The theoretically predicted trends in the hot gas flow for air at

- uniform temperature throughout initlally are as follows: Shock pressure
ratio decreases wlth distance; static pressure and aversge values of
density, fluld velocity, and Mach number incresse with time at a fixed
point; and average sonlc veloclty decreases with time at a fixed point.

>

Langley Aeronautical ILaborstory,
National Adviscry Committee for Aeronautics,
Lengley Field, Va., December T, 195k,
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APPENDIX A

DERTIVATTON OF CHARACTERISTIC EQUATIONS FOR QUASI-~
ONE-DIMENSTONAL CHANNEL FILOW WITH AREA CHANGE,
FRICTION, AND HEAT ADDITION

The general form of the quasili-one-dimensional continulty equation
is expressed as

S (pn) + (pur) = 0 (a1)
ot ox

3 loge A d loge A O lo 3 lo
ge + U Ee + 8e O + U Be P + JU

> . S5t 3 -0 42

If aversged values across a sectlon of the flow are employed for p
and U vwhen channel flows are considered, the area term A represents
only the physical cross-sectional area and boundary-layer displacement
thickness is of no concern.

The identities

g2 = 9RT (A3)
and
a8 = d(Heat added) ()
R RT

combined with the equations of stete and energy yleld the following
familiar relationships:

(Constant) a2¢v/R e-5/R (45)

kel
I

(Constant) aZCP/R e"S/R (A6)

o]
1}
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Now, if all the fluid under consideratlon has been in the same
state at any previous time, equations (A5) and (A6) may be differentiated
wilth respect to x and t wlth no contribution from the constant term.

d log, p B 2cy, d log, a O % (72)
> R o re
S
0 loge p 2y d log,a OFf (A7b)
ot R ot 3t
S
d log, P ) Ecp o) log, & i 0 o (470)
Ox R dx ox
dlog p 2c_9dlog & O 5
— & - _2 e _ B NG
ot R ot ot (A72)

The momentum equatlion 1s then written by use of the skin-friction
coefficlent and hydraulic diameter as

2R
@+UB—U+}-@+ cf:o (A8)
ot dx P ox D

Thils equation 1s not exact, since the effective values of p and U
were chosen to satisfy the continuilty equation; however, for "full"
velocity profiles (that is, profiles in which the velocity deviates only
slightly from its maximum value in a large part of the cross section),
equation (A8) is a good approximation.

Equetions (A8) and (A2) can be rearranged, after substituting from
equation (A7) and employing the convective derivative

D(

Dt

Q/
—
~—
+
(@
Q/
—~
~—

(49)

o/
ct
o/
»
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to give
aS
DU, 2oy e a2 "R 20 (210)
Dt R dx 7 ox D
2 U D% D loge A
—;Y:a-i-a&-am+a Dte =0 (a11)

Equations (Al0) and (All) maey be added and subtracted to give the
following egquations in operstor form:

S

D= 2U2c:
.R..[.aé_ 2_cva+U =..a.D_jﬁge_A+.a_'._D_+a§_.S.+7— a R £
ox/\ R Dt 7\Dt ox/R ¥ Dt D

(a12)

2¢ D lo DL o
.P_,_a_a__ _v_'a_U = =8 Ee ER_ ?._.S_.[.?_la R+ £
Dt ox Dt 7\Dt ox/R ¥ Dt D
(A13)

The assumptlon has been made in equations (A12) and (A13) that cv/R

is constant. Now, from the definition of the derivative along & charac-
teristic of slope 8x/5t equal to Ut a as

N

o) _ ) , (g o)D)y, 30) (a2t

5t ot -

equations (A12) end (Al3) mey be written in the final form:

] S
&P B (2ey D loge A a ° R -1 D R 2U2Cf
= — a+ U _—
Dt y &t V4 Dt D

(a15)
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APPENDIX B
EVALUATTON OF CONVECTIVE DERIVATIVE OF ENTROPY

The convectlve derivative of entropy may be expressed in the form

— = ==y = (B1)
Dt RT\Dt Dt

where DJ/Dt represents the heat added per unit mess by heat transfer
and heat sources while DHy/Dt represents the heat dissipated per unit

mass by friction.

The heat transfer per unit mass from the walls may be approximated
as hhe/pD where 8 1s the difference between the wall tempersture and
the recovery temperature of the flow; for exsmple,

-1
8 = Tya11 - Tflowé— rr’ - Me) (B2)

The assumption is next introduced that the relation between heat
transfer and skin friction is given by a modified form of Reynolds'
analogy which is assumed to apply for turbulent as well as for laminar
boundary layers in both steady and unsteady flow. Substitution of the
perfect gas law into the modified form of Reynolds' anslogy results in
the followling equatilon for the wall hest~-transfer coefficient:

1 -2/3
B= 7_% RoUPy ' “cp (B3)

The heat-transfer term may then be written eas

-2
DI _ 27 ROy, p -2/3 (B4)
Dt 7y -10D
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The frictional dissipation per unit mass 1s assumed to be the product
of the average veloclty multiplied by the wall~shearing force and divided
by the mass in the flow:

DHr _ yr(Perimeter)sx _ 207
Dt pA Ix D

Although equation (B5) is not exact in general, it is a good approxi-
mation for most cases. It might be noted that equetion (B5) is exact for
a true one-dimensional-flow model where the velocity 1s considered con-
stant across a cross section of the flow with a discontinulty in wveloecity
at the wall. It 1s also exact for incompressible Poiseuille flow since

2
the dissipation fumectlon, u/‘p é%) dy, reduces to the value of equa-

oy
tion (B5).
Therefore, under the conditions presumed to apply above, egua-

tions (Bl), (B4), and (B5) may be combined to evaluate the convective
derivative

lw]
i

M2 ¢ —= 8 Pr"g/5 27 e, (B6)
Dt y -1 D

1

H |
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APPENDIX C

LINEARTZED SOLUTION FOR INTERSECTION OF CHARACTERISTICS
AND ENTROPY DISCONTINUITY
The linearized solution for the intersection of the characteristic

lines with an entropy discontinuity is obtained in the followlng manner
(see fig. 1 for notation):

2
SPEPf—P(;:Qf"Qc:y_laC(%") (Cl)
Pe + Qp = " ? T ac<§§ + %) (c2)

In these equations the values of ¥ are assumed to be identlcal
everywhere.

Dividing equetion (C1) by (C2) and applying the conditlon that the
pressures are always equal to one another at any instant on both sides
of the discontinuity ylelds

Sf—Sc
2¢
8 _e -1 (c3)
Po +Qp Se-Sc
2¢
e P + 1

Now, 1f the subscript o denotes conditions at time t = 0 I1mmedi-
ately after the diephragm burst with

A5 =S¢ - S (ch)
or

LS = Mo(l + A7) where A<K 1 (c5)
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and

LSq
a 2c,
_B_O_ = e P (C6)
Bao
gubstituting equetion (C5) in equetion (C3) and expanding gives
£So JASTo)
2c 2
o °p
Y N\ YY) Wl A e (c7)
Po + Qf £So ?.CP JaSTS
_— c
2c P
e P o4 e -1
or
P, + Q 1S aﬁo/ fag
o _ ¢ £ N — F oo e e (c8)
SPO Pao + QBO
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Po = Pa, Qf - Qpo
Since -———————— and ———— are of order A, the first-order

Pao + Qﬁo Pao + QBo
or linearized solution becomes

(c10)
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APPENDIX D

RELATION BETWEEN SKIN-FRICTION COEFFICIENT

AND VELOCITY PROFILE

The relatlon between skin-friction coefficlent and velocity proflle
for an incompressible turbulent boundary layer on a flat plate may be
found in the following manner. Let the velocity profile in the boundary

l/n

u

layer be of the form X = <F{> where Uy is the local streamwilse
U 3]

velocity at the distance y from the plate and & 1s the boundary-layer
thickness. Then, equating the wall shearing stress T to the rate of
decrease, in the stresmwise § direction, of the momentum in the boundary

layer gives

a ts)
T=£-Opww-uw@ (D1)

Evaluation of this equation for comstant p ylelds

T _ n @ , _ (2 - n2)5 dn (D2)
pP  (n+ 1)(n+2) & (54 1)2n + 2)2 4t

The following relations are then assumed between the shearing-stress
velocity U¥ and the boundaxry-layer thickness B (see ref. 10):

Eﬁz = g _ (D3)

U _ (z*g)l/ i (k)

The parsmeter B may be assumed a constent for n Invariant with
£, but its form for n = n(&) 1is not specified.
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Substitution of equations (D3) and (D4) into equation (D2) results
in the following differentiel equation:

=

5 oF .

sntL 45 _ _1_le/n (a+VD(@m+2) _ (2 -12° S;—ig
i =\ 3 n n(n + 1)(n + 2) at

(D5)

For the case of n and B independent of £, equation (D5) may be
integrated, by essuming n ¥ -1l. This integration with application of
the boundary condition of & =0 at & = O produces:

n+l 1
+5&

vin+2)(n+3) n U n+3 (D6)

5 = E
us™ n v

Substitution of equation (D6) into equation (D2) results in the
expression for the skin-friction coefficient:

= 2
o3 o=
- T(E) N n v \*2 D
w2t pU/2 (o + 2)(n + 3)B? (Uﬁ) oD
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Flgure 3.- Photograph of measuring station in shock tubes.
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ep = 0.0‘58]_38'1/5.

<9

GLEg NI WOWN



-.08

coefficient,

Shock prassure -attenuation

R
fa)
s

-.03

-02

-.0l1

e —

3 4 5 6 7 8
Perfect - fluid shock pressure ratia, Roo/l’m

(b) Shock pressure-attenuation coefficient.

Figure T.- Concluded.

CLEC NIL VOVN

<9




pressure ratio, p,,/l:,CD

Static

44 — —
-
|
a0 — —]
p, /p
Afo| ® //
7
3¢l 20
36 7 /_‘I L
3.2 [ »
3.4
/
| ] . — —|
3.2 | ]
2.9 —
3.0 —
P/"_’T/
s n
2.4 2.6 o —
a1 1 |
2o 2. 2l—T1T""]
| T
2.0
|75~J-——‘
1.6
| 5f—
', L2 5
803 004 005 006 007 008 009 010 Ol 012 013

Time from diaphragm burst, t,, sec

Figure 8.- Theoretical variation of static pressure ratio with time.
x = 8 feet; 8¢ = 8g = 1,117 feet per second; cp = O.OSBlRe'l/5.
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¥

013

CLEC NI VOVH

Ly




I ﬁr
Py LT | ﬁ
© I ]
8 e T — 1
. | B
34 ] —— =
| | —
; 32 | —
p—
307 [ [ TR T
::_—_J -1
U> 2.8
~ [ R
> 6 26 —] s
. [ ——T | |
8 . —_—
£
£ |
e 5 - . T
xr
3] — L
2 20
v 4
3
= 78]
®
<
!
150
.2[
1.25
i - |
003 004 005 006 Q07 008 009 olo on oz ol3

Time from diaphragm burst, t,, ssc

Figure 12.~ Theoretical variation of average Mach number wilth time.
= 8 feet; ac = B, = 1,117 feet per second; cp = 0.0581R,"1/2,

GLCE NI VOWVN




00T~ 9¢-¥1-C - fapduT-yovN

parameter, agt, ft

Time

12t P'= 63419 aq
P'= 65219 o P'= 65172 a, Q'= 50609 a4
Q'= 50998 a, / Q = 5099 ag a'=1.1403 da
a's 1,1622 ag “la = 11817 ag U= 640 op
U= 71l ag U= .709 a4 p = 2298 p,
10 p=2624 p_ p =2617 p,
: P' = 65017 ag
F’l = 55272 o 'S / Ql = 50887 0p
Q =50908 aq a'* 1.1590 a,
a'= 11618 dg U= 706 og
8 U= 718 ag b = 2576 p.
(P'=6.4744 ag
0‘=5.o736 Ow
e a'=1.1548 ag4
6r U= .700 g
e P'= 65346 a P'=6.4284 a, (p 2510 p,
& Q= Q'=5.0609 a,
o a= a'=1.1489 a,
SR U= U= 684 q
4 p= p=2422 p_
o~ P'"6.5397 ag
Q'=5.0698 o,
o2 a'=1.1610 a,
2t 2 U= 735 g, P'= 6545 ag
© o\ P 22805 p, Q'= 50609 a,
AN a'= 1.1606 ag
b4 U= .742 a,
° | At p 22600 p, | | | | |
g > 0 2 ) 3 B 0 12 (3 6
x, ft

Figure 13.-~ Characteristic plot for shock pressure retic of 2.60 showing
generation of waves In region B.
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